Linear Equations in

Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering

It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched cards
into the university’s Mark Il computer. The cards contained
information about the U.S. economy and represented a
summary of more than 250,000 pieces of information
produced by the U.S. Bureau of Labor Statistics after two
years of intensive work. Leontief had divided the U.S.
economy into 500 “sectors,” such as the coal industry,
the automotive industry, communications, and so on.
For each sector, he had written a linear equation that
described how the sector distributed its output to the other
sectors of the economy. Because the Mark II, one of the
largest computers of its day, could not handle the resulting
system of 500 equations in 500 unknowns, Leontief had
distilled the problem into a system of 42 equations in
42 unknowns.

Programming the Mark II computer for Leontief’s 42
equations had required several months of effort, and he
was anxious to see how long the computer would take to
solve the problem. The Mark Il hummed and blinked for 56
hours before finally producing a solution. We will discuss
the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts

at Harvard in 1949 marked one of the first significant
uses of computers to analyze what was then a large-
scale mathematical model. Since that time, researchers
in many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and
software triggering a demand for even greater capabilities.
Computer science is thus intricately linked with linear
algebra through the explosive growth of parallel processing
and large-scale computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

o Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.
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The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface
rocks and are measured by geophones attached to
mile-long cables behind the ship.

Linear programming. Many important management
decisions today are made on the basis of linear
programming models that use hundreds of variables.
The airline industry, for instance, employs linear

programs that schedule flight crews, monitor the
locations of aircraft, or plan the varied schedules of
support services such as maintenance and terminal
operations.

Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software
relies on linear algebra techniques and systems of
linear equations.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithm will be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to a
matrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 | SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables xi, ..., x, is an equation that can be written in the
form
aixy+asxy +---+a,x, =b (D

where b and the coefficients «a, ..., a, are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, » might be 50 or 5000,
or even larger.

The equations

dx, —5x, +2=x; and x, = 2(\/8—)61) + X3
are both linear because they can be rearranged algebraically as in equation (1):
3x1 —5x, = =2 and 2x; 4+ x, —x3 = 2V6
The equations
dx; —5x; = x1x; and x; =2/x] —6

are not linear because of the presence of x| x; in the first equation and /x; in the second.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, xi, . .., x,. An example is

2x1—Xxp + 1.5x3 = 8
X1 — 4X3:—7

2
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A solution of the system is a list (s1, 52, . . ., s5,) of numbers that makes each equation a
true statement when the values sy, . . ., s, are substituted for x, . . ., x,, , respectively. For
instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted
in (2) for xy, x2, x3, respectively, the equations simplify to 8 = 8§ and -7 = —7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

X1 —2X2: -1
—X1+3x,= 3

The graphs of these equations are lines, which we denote by £; and £,. A pair of numbers
(x1, xp) satisfies both equations in the system if and only if the point (x1, x;) lies on both
£y and £,. In the system above, the solution is the single point (3, 2), as you can easily
verify. See Figure 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) X1 — 2X2 = -1 (b) X1 — 2X2 =—1
X1 +2x,= 3 —X1 +2x, = 1
*a *a
2'/ 2+
: A ————x, e
// 3 / 3
62 el 1 el 1

(a) (b)
FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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A system of linear equations has

1. no solution, or
2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

X1 — 2X2 + X3 = 0
2X2 — 8X3 = 8 (3)
10

5X1 — 5)C3

with the coefficients of each variable aligned in columns, the matrix

| ) 1
0o 2 =8
5 0 =5

is called the coefficient matrix (or matrix of coefficients) of the system (3), and

1 -2 1 0
0o 2 =8 8 4)
5 0 =5 10

is called the angmented matrix of the system. (The second row here contains a zero
because the second equation could be writtenas 0 - x; + 2x, — 8x3 = 8.) Anaugmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 x 4 (read “3 by 4”) matrix. If m and
n are positive integers, an m x n matrix is a rectangular array of numbers with 7 rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x| term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x, term in the second equation to eliminate
the x, terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.
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EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

X1 —=2x24+ x3= 0 1 =2 1 0
2X2—8X3= 8 0 2 —8 8
5 0 =5 10

le — SX3 =10

Keep x1 in the first equation and eliminate it from the other equations. To do so,add —5
times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

—5 - [equation 1] —5x1 + 10x, — 5x3= 0
+ [equation 3] 5x1 — 5x3=10
[new equation 3] 10x, — 10x3 = 10

The result of this calculation is written in place of the original third equation:

X1— 2x24+ x3= 0 | ! 0
2X2 — 8)(3 = 8 0 2 -8 8
10x, — 10x3 = 10 0 10 —10 10

Now, multiply equation 2 by % in order to obtain 1 as the coefficient for x,. (This
calculation will simplify the arithmetic in the next step.)

xX1— 2x2+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
10x5 — 10x3 = 10 0 10 —1o 10

Use the x; in equation 2 to eliminate the 10x, in equation 3. The “mental”” computation
is

—10 - [equation 2] —10x, + 40x3 = —40
+ [equation 3] 10x, — 10x3 = 10
[new equation 3] 30x; = —30

The result of this calculation is written in place of the previous third equation (row):

X1 —2x24+ x3= 0 1 =2 1 0
Xy — 4)C3 = 4 0 1 —4 4
30x3 = —30 0 0 30 =30

Now, multiply equation 3 by % in order to obtain 1 as the coefficient for x3. (This
calculation will simplify the arithmetic in the next step.)

X1 —2x,+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4
x3 = —1 0O 0 1 —1

The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

X1 —2x+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4
0 0 1 -1

X3:—1
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Each of the original equations
determines a plane in
three-dimensional space. The
point (1,0, —1) lies in all three
planes.

Eventually, you want to eliminate the —2x, term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the —4.x3 and +x3 terms in equations 2 and 1.
The two “mental” calculations are

4 - [equation 3] 4x; = —4 —1 - [equation 3] —x3=1
+ [equation 2] X, —4dx3 = 4 + [equation 1] X1 —2x+x3=0
[new equation 2] X = 0 [new equation 1] x| —2x; =1

It is convenient to combine the results of these two operations:

X1 —2x = 1 -2 0 1
X2 = 0 0 1 0 0
0O 0 1 -1

X3=—1

Now, having cleaned out the column above the x; in equation 3, move back to the x; in
equation 2 and use it to eliminate the —2x, above it. Because of the previous work with
X3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation |
and obtain the system:

Xy = 1 1 0 0 1
X2 = O 0 1 O 0
Xy =1 0 0 1 -1

The work is essentially done. It shows that the only solution of the original system is
(1,0, —1). However, since there are so many calculations involved, it is a good practice
to check the work. To verify that (1,0, —1) is a solution, substitute these values into the
left side of the original system, and compute:

(1) —2(0) + I(-)=1-0—1= 0
2000 —8(-1)= 0+8= 8
5(1) —5-1)=5 4+5=10

The results agree with the right side of the original system, so (1,0, —1) is a solution of
the system. |

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.!

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a

' A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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row is scaled by a nonzero constant ¢, then multiplying the new row by 1/c¢ produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that ¢ times row 1 is added to row 2 to produce a new row
2.To “reverse” this operation, add —c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29-32 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM
1. Is the system consistent; that is, does at least one solution exist?
2. If a solution exists, is it the only one; that is, is the solution unigue?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

X1 — 2.X2 + x3= 0
2x2 — 8X3 = 8
5X1 — 5X3 =10

SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

X1 —2x+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
0 0 1 —1

X3:—1
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The system is inconsistent because
there is no point that lies on all
three planes.

At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x, and hence could determine x; from equation 1. So a solution exists;
the system is consistent. (In fact, x, is uniquely determined by equation 2 since x5 has
only one possible value, and x; is therefore uniquely determined by equation 1. So the
solution is unique.) |

EXAMPLE 3 Determine if the following system is consistent:

Xy — 4X3 =38
2x; —3x3 + 2x3=1 %)
4x; — 8x7 + 12x3 =1

SOLUTION The augmented matrix is

0o 1 —4 8
2 =3 2 1
4 -8 12 1

To obtain an x; in the first equation, interchange rows 1 and 2:

2 3 2 1
o 1 -4 8
4 -8 12 1

To eliminate the 4x; term in the third equation, add —2 times row 1 to row 3:

2 =3 2 1
0 1 —4 8 (6)
0 -2 8 -1

Next, use the x, term in the second equation to eliminate the —2x, term from the third
equation. Add 2 times row 2 to row 3:

2 =3 2 1
0 1 -4 8 7
0 0 0 15

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:
2x1 —3x +2x3 = 1
X, —4x3= 8 (8)
0 =15

The equation 0 = 15 is a short form of Ox; + 0x; 4+ Ox3 = 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of xj, x,, x3 that
satisfy (8) because the equation 0 = 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution). [ |

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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— NUMERICAL NOTE

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals £.d; ---d, x 10", where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated)
to the number of digits stored. “Roundoff error” is also introduced when a
number such as 1/3 is entered into the computer, since its decimal representation
must be approximated by a finite number of digits. Fortunately, inaccuracies in
floating point arithmetic seldom cause problems. The numerical notes in this
book will occasionally warn of issues that you may need to consider later in your
career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exer-

cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the

system in order to solve it. [More than one answer is possible in (a).]

a. X1+ 4x, —2x3 + 8xy = 12 b. x; —3x, +5x3 —2x4= O
Xy — Tx3 + 2x4 = —4 Xy + 8x3 =—4
S5x3 — x4= 7 2% - 3
X3 + 3x4 = =5
xyg = 1

2. The augmented matrix of a linear system has been transformed by row operations

into the form below. Determine if the system is consistent.

1 5 2 -6
0 4 -7 2
0 0 5 0

3. Is (3,4, —2) a solution of the following system?
5x1 — x4+ 2x3= 7
—2x1 + 6x2 + 9x3 =
—7X1 + 5X2 - 3X3 = -7
4. For what values of i and k is the following system consistent?
2x1 — Xy = h
—6X1 + 3X2 =k
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1.1 EXERCISES

Solve each system in Exercises 1-4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. X1 + 5X2 = 7 2. 2X1 + 4X2 =—4

—2X1 — 7X2 =-5 5X1 + 7)C2 =11
3. Find the point (xy, x,) that lies on the line x; 4+ 5x, = 7 and
on the line x; — 2x, = —2. See the figure.
X2 x-2x,=-2
X|+5x,=17

X

4. Find the point of intersection of the lines x; —5x, = 1 and
3x 1— 7)62 =5.
Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

1 -4 5 0 7

s |01 -3 0 6

"o 0o 1 0 2
0 0 —
(1 -6 4 0 —17

6. |0 2 -7 0 4

"o 0o 1 2 -3
0 0 3 1 6]

In Exercises 7-10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

S T
7. 8. [0 1 7 o0
0 0 0 1 o o0 2 0
0 0 1 -2
(1 -1 0 0 —47
o [0 1 -3 0 7
"o 0o 1 =3 -1
(0 0 0 2 4
(1 2 0 3 2]
0 1 0 —4 7
049 0 1 0 6
(0 0 0 1 -3

Solve the systems in Exercises 11-14.
11. Xy +4x3 =-5
X1+ 3x 4+ 5x3 = =2
3xi+7x2+T7x3= 6

12. X, —3xy +4x3 = —4
3X1 — 7X2 + 7X3 = -8

—4X1 + 6X2 — X3 = 7
13. X1 — 3X3 = 8
2X1 + 2X2 + 9X3 = 7
Xo + 5X3 =-2
14. X1 — 3X2 =5

—X1 + XZ+5X3=2
Xy + X3:0

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

15. x; + 3x3 = 2
Xo —3x4= 3
—2X, +3x3 +2x4 = 1
3x; + 7x4 = =5
16. X1 —2x4 = =3
2x7 + 2Xx3 = 0
X3+ 3x, = 1

—2X1 + 3X2 + 2X3 + X4

17. Do the three lines x; —4x, =1, 2x; —x, = —3, and
—x; —3x, =4 have a common point of intersection?
Explain.

18. Do the three planes x; + 2x, + x3 = 4, x, —x3 = 1, and
X1 + 3x, = 0 have at least one common point of intersec-
tion? Explain.

In Exercises 19-22, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 h 4 1 h -3
1. [3 6 8] 20. [—2 4 6]

1 3 -2 2 =3 h

2. [_4 ; 8] 2. [_6 ; 5}

In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the
approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.



23. a.

b. A 5 x 6 matrix has six rows.

Every elementary row operation is reversible.

c. The solution set of a linear system involving variables

X1,...,X,isalistof numbers (sy,. .., s,) that makes each
equation in the system a true statement when the values
Sy, ...,8, are substituted for xy,..., x,, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Elementary row operations on an augmented matrix never

change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same
number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same
solution set.

25. Find an equation involving g, h, and k that makes this
augmented matrix correspond to a consistent system:
1 —4 7 g
0 3 =5 h
-2 5 -9 k

26. Construct three different augmented matrices for linear sys-
tems whose solution setis x; = —2,x, = 1, x3 = 0.

27. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients ¢ and d ?
Justify your answer.

X1+ 3 =f
cxy +dx, = g
28. Suppose a, b, ¢, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, ¢,and d?
Justify your answer.
ax; + bx, = f
cx) +dx, = g
In Exercises 29-32, find the elementary row operation that trans-

forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.
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0 2 571 4 =7
29. |1 4 -7(,|]0 =2 5
13 -1 6] [3 -1 6
1 3 -4 [1 3 —4
3. |o 2 6[.,|]0 1 -3
0 5 9] [0 =5 9
12 1 0] [1 -2 1 o0
3. o 5 2 8|,|0 5 —2 8
4 -1 3 6] |0 7 -1 —6
12 -5 0] [1 2 -5 0
2.0 1 -3 2,0 1 -3 =2
03 9 5|0 0o o -1

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let Ty, ..., Ty denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—
to the left, above, to the right, and below.? For instance,

T] :(10+20+T2+T4)/4, or 4T1—T2—T4:30

20°  20°
10° L 2 40°
10° e 3 40°
30° 30°

33. Write a system of four equations whose solution gives esti-
mates for the temperatures 71, ..., Ty.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991). pp. 145-149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by
its sum with —1/5 times row 3. (In any case, do not use the x, in equation 2 to
eliminate the 4x, in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
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Since (3, 4, —2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3, 4, —2) does not
satisfy all three equations, it does
not lie on all three planes.

step now is to add 2 times equation 4 to equation 1. (After that, move to equa-
tion 3, multiply it by 1/2, and then use the equation to eliminate the x3; terms
above it.)

2. The system corresponding to the augmented matrix is

X1 4+ 5x3 + 2x3 = —6
4X2 — 7X3 =

5)63 =

The third equation makes x3 = 0, which is certainly an allowable value for x3. After
climinating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x, and x;. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. Itis easy to check if a specific list of numbers is a solution. Set x; = 3, x, = 4, and
x3 = —2,and find that

53) — () +2(=2)= 15— 4— 4=7
—2(3) +6(4) +9(-2)= —6+24—18=0
—7(3) +5(4) —3(=2)=-21+20+ 6=5

Although the first two equations are satisfied, the third is not, so (3,4, —2) is not a
solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2X1—X2:h
0=k+3n

If k + 3K is nonzero, the system has no solution. The system is consistent for any
values of /1 and k that make k + 34 = 0.

1.2 | ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.! By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an arbi-
trary rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

! The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination

method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as

2 =3 2 1 I 0 0 29
0o 1 -4 8 and 0O 1 0 16
0 0 0 5/2 0 0 1 3

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries (m)
may have any nonzero value; the starred entries () may have any value (including zero).

. s N N 0 B % * * * * * * *
0 O 0 " X * * * * *

0 X *
, 0 O 0 0 " X * * * *

0O 0 0 O
0o 0 0 o0 0O 0 O 0O O % * * *
o o o o o o0 o0 o %

The following matrices are in reduced echelon form because the leading entries are 1°s,
and there are 0’s below and above each leading 1.

| 0 x N 0 1 * 0 0 0 = * 0 x
0 1 N N o 0 O 1 0 0 = * 0 x
, o 0 O O 1 0 *x =x 0 =«

o 0 0 o0
0 0 0 0 o o0 O 0 O 1 * * 0 %
o 0 o0 o O O o o0 1 =«

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.
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If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities
use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row)
echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

A pivot position in a matrix A is a location in A that corresponds to a leading |
in the reduced echelon form of A. A pivot column is a column of A that contains
a pivot position.

In Example 1, the squares (m) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot
positions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.
0 -3 -6 4 9
-1 -2 -1 3 1
-2 -3 0 3 -1
1 4 5 -9 -7

A:

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed
in this position. A good choice is to interchange rows 1 and 4 (because the mental
computations in the next step will not involve fractions).

Pivot
1<J74 5 =9 -7
-1 -2 -1 3 1
-2 -3 0 3 -1
0 -3 -6 4 9
L Pivot column

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely, in the second column. Choose the 2 in this position as the next pivot.

Pivot
4 5 -9 -7
2 4 —6 -6

5 10 —-15 15
-3 -6 4 9

ey

[ e

L Next pivot column
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Add —5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.

1 4 5 -9 -7
0 2 4 —6 —6
0O 0 0 0 o )
0 0 0 -5 0

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

Pivot

14 5 -9 -7 koo
0 2 4 -6 -6 Generalform: | 0 & ¥ ¥ %
0 0 0 -5 0 reneral form: 0 0 0 - %
0 0 o 0 O 0 0 0 0 0
4 4 t Pivot columns

The matrix is in echelon form and thus reveals that columns 1,2, and 4 of A are pivot

columns.
Pivot positions
OJ—3 J—6 419

-1 —2<-1 3|1
A= -2 -3 0 3<-1 3)

1 4 5 -9 -7

t t t Pivot columns |

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and —5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:

0O 3 -6 6 4 -5

3 -7 8§ =5 8 9

3 -9 12 -9 6 15
SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.
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0 3 -6 6 4 =5
3 -7 8§ —5
3 -9 12 -9 o6 15
bt Pivot column

o]
\O

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
3<Jj9 12 -9 6 15

3 =7 8§ =5 8 9
0 3 -6 6 4 =5

STEP 3
Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add —1 times row 1 to row 2.

Pivot
3<Jj9 12 -9 6 15

0o 2 —4 4 2 -6
0 3 -6 6 4 =5

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

Pivot
3 -9 12 -9 6 15
0 2« —4 4 2 —6
0O 3 -6 6 4 -5

t New pivot column

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add —3/2 times the “top” row to the row below. This produces

3 -9 12 -9 6 15
0o 2 -4 4 2 —6
0 0 0 0 1 4
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:

3 -9 12 -9 6 15
0o 2 —4 4 2 —6
0

0 0 0 1+ 4
L Pivot

Steps 1-3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it I by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3torows 2 and I.

3 =9 12 =9 0 -9 <~ Row | + (—6) -row 3
0O 2 —4 4 0 —14 <~ Row 2 + (=2) -row 3
0 0 0 0 1 4

The next pivot is in row 2. Scale this row, dividing by the pivot.
[3 =9 12 -9 0 -9

o 1 -2 2 0 -7 < Row scaled by
o 0 o0 o 1 4

I

Create a zero in column 2 by adding 9 times row 2 to row 1.

3 0-6 9 0 =72 < Row 1 + (9) - row 2

Finally, scale row 1, dividing by the pivot, 3.

1 0 -2 3 0 24 < Row scaled by 3
o 1 -2 2 0 -7
0 0 0 0 1 4

This is the reduced echelon form of the original matrix. |

The combination of steps 14 is called the forward phase of the row reduction
algorithm. Step 5, which produces the unique reduced echelon form, is called the back-
ward phase.

NUMERICAL NOTE

In step 2 above, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form

I 0 -5 1
o 1 1 4
0o 0 0 O

There are three variables because the augmented matrix has four columns. The
associated system of equations is

X1 —5)63:1
X2+ x3=4 C))]
0 =0

The variables x; and x, corresponding to pivot columns in the matrix are called basic
variables.Z The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms of
the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x,
and the second for x;. (Ignore the third equation; it offers no restriction on the variables.)

X1 = 1+ 5X3
Xy =4 —Xx3 )]
x3 is free

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x; and x,. For instance, when
x3 = 0, the solution is (1,4,0); when x3 = 1, the solution is (6, 3, 1). Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear system whose augmented ma-
trix has been reduced to

1 6 2 -5 -2 —4

O 0 2 -8 -1 3

o o o o 1 7
SOLUTION The matrix is in echelon form, but we want the reduced echelon form

before solving for the basic variables. The row reduction is completed next. The symbol
~ before a matrix indicates that the matrix is row equivalent to the preceding matrix.

1 6 2 -5 —2 —47] 1 6 2 -5 0 107
0 0 2 -8 -1 3|~|0 0 2 -8 0 10
o o o o 1t 7/ |0 0 O O 1 7]
(1 6 2 -5 0 10] [1 6 0 3 0 O
~ 0 1 -4 0 5|~ 0 1 -4 0 5
0o 0o 0 0 1 7] [0 0 0 O 1 7]

2 Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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There are five variables because the augmented matrix has six columns. The associated
system now is

X1 +6x, +3x4 =0
X3 — 4xy =5 (6)
X5 = 7

The pivot columns of the matrix are 1,3, and 5, so the basic variables are x|, x3,and xs.
The remaining variables, x, and x4, must be free. Solve for the basic variables to obtain
the general solution:

X; = —6x; —3x4

X, is free

X3 =5+4x,4 @)

X4 is free

X5 = 7

Note that the value of xs is already fixed by the third equation in system (6). [ |

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

X1 + 5x; =21

X2+ x3= 4

We could treat x, as a parameter and solve for x; and x3 in terms of x,, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

X; — Txy + 2x3 — 5x4 + 8x5 = 10
Xp —3x3 + 3x4 + x5 = -5
X4 — X5 = 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x;,
and then substitute the expressions for x, and x, into equation 1 and solve for x;.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

— NUMERICAL NOTE

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (4, —, *, /)
on two real floating point numbers? For an n x (n + 1) matrix, the reduction
to echelon form can take 2n°/3 4+ n?/2 — 7n/6 flops (which is approximately
2n3/3 flops when n is moderately large—say, n > 30). In contrast, further
reduction to reduced echelon form needs at most n? flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3xy — 6x3 + 6x4 + 4x5 = —5
3x1 — Tx, + 8x3 — 5x4 + 8xs 9
3x1 — 9xy + 12x35 — 9x4 + 6x5 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to

3 -9 12 -9 6 15
0 2 -4 4 2 -6 ®)
0 0 0 O 1 4

The basic variables are xi, x,, and xs; the free variables are x; and x4. There is no
equation such as 0 = 1 that would indicate an inconsistent system, so we could use
back-substitution to find a solution. But the existence of a solution is already clear in
(8). Also, the solution is not unique because there are free variables. Each different
choice of x3 and x4 determines a different solution. Thus the system has infinitely many
solutions. [ |

When a system is in echelon form and contains no equation of the form 0 = b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3 Traditionally, a flop was only a multiplication or division, because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19-20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

[0 .-« 0 b] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM
1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS

1. Find the general solution of the linear system whose augmented matrix is

1 -3 =5 0
0o 1 -1 -1

2. Find the general solution of the system

X1 —2x) — x3+3x4=0
—2x1 + 4x, + 5x3 —5x4 =3
3)61 —6)C2 —6X3+8)C4:2

3. Suppose a 4 x 7 coefficient matrix for a system of equations has 4 pivots. Is the
system consistent? If the system is consistent, how many solutions are there?

1.2 EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1 0 0 0 1 1 0 1 1

1 0 0 0 1 0 1 0 0 1 1 0 0 2 0 2 2
L.La|l0 1 0 0 b.lo 1 1 o0 “fo o o o 1o 0o 0o 3 3
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 4
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(11 0 1] 1 1 0 0
22/0 0 1 1| b|0O 1 1 0
[0 0 0 0 0 0 1
10 0 0
0o
o 1 1 0

0 0 1 1

011 11
alo 0o 2 2 2

o 0o 0o o 3

(0 0 0 0 0

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

1 2 3 4 1 3 5 7
3. |4 5 6 7 4. |3 5 7 9
6 7 8 9 5 7 9 1

5. Describe the possible echelon forms of a nonzero 2 x 2
matrix. Use the symbols B, %, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 x 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7-14.

1 3 4 7 1 4 0 7
7. (3 9 7 6] 8. 2 7 0 10]
[0 1 -6 5 1 -2 -1 3
9. 1 -2 7 —6:| 10. 3 -6 2 2]
T3 —4 2 0 C 1 =7 6 5
1. | -9 12 -6 0 12. 0 0 1 -2 -3
| -6 8 —4 0 -1 7 -4 2 7
1 -3 0 -1 0 =27
0 1 0 0 —4 1
13. 0 0 0 1 9 4
(00 0 0 0 0
1 2 -5 -6 0 —57]
0 1 -6 =3 0 2
400 0o 0o 0o 1 o0
(0 0 0 0 0 0

Exercises 15 and 16 use the notation of Example | for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

u * * *
15. a. 0 u * *
0 0 u 0

0 u * * *

b. 0 0 | * *

0 0 0 0 L]

] * *
16. a 0 ] *
0 0 0

] * * * *

b. | 0 0 u * *

0 0 0 u *

In Exercises 17 and 18, determine the value(s) of / such that the
matrix is the augmented matrix of a consistent linear system.

2 3 h 1 -3 =2
17. |:4 6 7] 18. |:5 h —7]
In Exercises 19 and 20, choose / and k such that the system has

(a) no solution, (b) a unique solution, and (¢) many solutions. Give
separate answers for each part.

19. X1 + I’Z)C2 =2 20.
4X1 + 8X2 =k

X1+3X2:2
3X1+hX2:k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.*

21. a. In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different

sequences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

c¢. If one row in an echelon form of an augmented matrix
is[0 0 O 5 0], then the associated linear system is
inconsistent.

22.

®

The echelon form of a matrix is unique.

b. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

c. Reducing a matrix to echelon form is called the forward
phase of the row reduction process.

d. Whenever a system has free variables, the solution set
contains many solutions.

e. A general solution of a system is an explicit description
of all solutions of the system.

23. Suppose a 3 x5 coefficient matrix for a system has three
pivot columns. Is the system consistent? Why or why not?

24. Suppose a system of linear equations has a 3 x 5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

# True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.



25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot in each column.
Explain why the system has a unique solution.

27. Restate the last sentence in Theorem 2 using the concept
of pivot columns: “If a linear system is consistent, then the
solution is unique if and only if ”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than
unknowns is sometimes called an underdetermined system.
Suppose that such a system happens to be consistent. Explain
why there must be an infinite number of solutions.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n x (n + 1) matrix is row reduced to reduced
echelon form. Approximately what fraction of the total num-
ber of operations (flops) is involved in the backward phase of
the reduction when n = 30? when n = 300?

Suppose experimental data are represented by a set of points
in the plane. An interpolating polynomial for the data is a

1.2 Row Reduction and Echelon Forms 23

polynomial whose graph passes through every point. In scientific
work, such a polynomial can be used, for example, to estimate
values between the known data points. Another use is to create
curves for graphical images on a computer screen. One method for
finding an interpolating polynomial is to solve a system of linear
equations.

33.

34.

Find the interpolating polynomial p(f) = ag + a1 + a,t*
for the data (1, 12), (2, 15), (3, 16). That is, find a,, a;, and
a, such that

ao + ai(1) + ax(1)* = 12

ao + a1(2) + ay(2)* =15

ap + a1(3) + ax(3)> = 16

[M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:
Velocity (100 ft/sec) 0o 2 4 6 8 10
Force (100 Ib) 0 290 148 39.6 743 119
Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is travel-
ing at 750 ft/sec. Use p(1) = ag + at + axt> + ast® + ayt*
+ ast. What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)®

5 Exercises marked with the symbol [M] are designed to be worked
with the aid of a “Matrix program” (a computer program, such as
MATLAB, Maple, Mathematica, MathCad, or Derive, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

SOLUTIONS TO PRACTICE PROBLEMS

X3 1. The reduced echelon form of the augmented matrix and the corresponding system

are

K

The general solution of the
system of equations is the line of

=8
-1

—8X3 =-3

Xy —

:ﬂ and e

X3=—1

The basic variables are x| and x;, and the general solution is

X1 = -3+ 8X3
Xy = —1 + X3
x3 is free

intersection of the two planes.

Note: It is essential that the general solution describe each variable, with any param-
eters clearly identified. The following statement does not describe the solution:

X1 = -3+ 8)C3
Xy = -1+ X3
x3 =1+ x, Incorrect solution

This description implies that x, and x5 are both free, which certainly is not the case.
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2. Row reduce the system’s augmented matrix:

1 =2 -1 3 0 1 =2 -1 3 0
-2 4 5 -5 3|~]0 0 3 1 3
3 -6 -6 8 2 (0 0 -3 -1 2
1 -2 -1 3 0]

~10 o0 1 3

(0 0 0 0 5

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the
coefficient matrix. This means that when the coefficient matrix is row reduced, it
will not have a row of zeros, thus the corresponding row reduced augmented matrix
can never have a row of the form [0 O --- 0 b], where b is a nonzero number. By
Theorem 2, the system is consistent. Moreover, since there are seven columns in
the coefficient matrix and only four pivot columns, there will be three free variables
resulting in infinitely many solutions.

1.3 | VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R?2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

o I R A

where w; and w, are any real numbers. The set of all vectors with two entries is denoted
by R? (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.!

Two vectors in R? are equal if and only if their corresponding entries are equal.

Thus |:L7‘] and [Z] are not equal, because vectors in R? are ordered pairs of real

numbers.

I Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1-5, and in most of the rest of the text, remain valid if the entries are complex
numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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Given two vectors u and v in R?, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,

RINHE RN

Given a vector u and a real number ¢, the scalar multiple of u by ¢ is the vector cu
obtained by multiplying each entry in u by c. For instance,

. 3 3 15
if u—[_l] and ¢ =5, then cu-5[_1:|—|:_5:|

The number ¢ in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Givenu = [_;} andv = [_g],ﬁnd 4u, (—3)v,and 4u + (—3)v.

4u = [_g . (v = [‘12}

4u+(—3)v=:_gi|+[_lgi|=[_§i| [ |

Sometimes, for convenience (and also to save space), this text may write a column

SOLUTION

and

3. .
vector such as |: _ | in the form (3, —1). In this case, the parentheses and the comma

1
distinguish the vector (3, —1) from the 1 x 2 row matrix [ 3 —1 ], written with brackets

and no comma. Thus
3
2]

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R?

Consider a rectangular coordinate system in the plane. Because each point in the plane

is determined by an ordered pair of numbers, we can identify a geometric point (a, b)
. a S

with the column vector bl So we may regard R? as the set of all points in the plane.

See Figure 1.

X,

°(2,2) °(2,2)

X

X

1 1

2.-1) ‘G,-1) C2.-1) °G,-1)

FIGURE 1 Vectors as points. FIGURE 2 Vectors with arrows.
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The geometric visualization of a vector such as [ _ 7 | isoften aided by including an

1
arrow (directed line segment) from the origin (0, 0) to the point (3, —1), as in Figure 2.
In this case, the individual points along the arrow itself have no special significance.?

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

Parallelogram Rule for Addition

If u and v in R? are represented as points in the plane, then u + v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Figure 3.

eu+V

LAY

0 1

FIGURE 3 The parallelogram rule.

EXAMPLE 2 Thevectorsu = [§:|v = [_?],andu +v= [_g] are displayed

in Figure 4.
)
utv 31

-+ ou
ve T
—t—t—+—1+— —t X,
-6 2
FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, (0, 0).

EXAMPLE 3 Letu= [ _? ] Display the vectors u, 2u, and —%u on a graph.

SOLUTION See Figure 5, where u, 2u = 6j|, and —%u = [ 2] are displayed.

-2 2/3
The arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for —%u is two-thirds the length of the arrow for u, and the arrows
point in opposite directions. In general, the length of the arrow for cu is |c| times the
length of the arrow for u. [Recall that the length of the line segment from (0, 0) to («, b)

is v/a? + b%. We shall discuss this further in Chapter 6.]

2In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Ou

1 X
u u
2u

Typical multiples of u The set of all multiples of u

FIGURE 5 |

Vectors in R3

Vectors in R? are 3 x 1 column matrices with three entries. They are represented ge-
ometrically by points in a three-dimensional coordinate space, with arrows from the

2
— - origin sometimes included for visual clarity. The vectors a = i and 2a are displayed
in Figure 6.
Vectors in R”
. If n is a positive integer, R" (read “r-n”) denotes the collection of all lists (or ordered
x| 2 n-tuples) of n real numbers, usually written as n x 1 column matrices, such as
FIGURE 6 Uuj
Scalar multiples. Us
u=| .
Uy

The vector whose entries are all zero is called the zero vector and is denoted by 0.
(The number of entries in 0 will be clear from the context.)

Equality of vectors in R” and the operations of scalar multiplication and vector
addition in R" are defined entry by entry just as in R?. These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end
of this section.

g Algebraic Properties of R”
oy For all u, v, w in R” and all scalars ¢ and d:
(Hu+v=v+u (V) c(a+v) =cu+cv
(i) (@+v)+w=u+ (v+w) vi) (c+du=cu+du
" (i) u+0=0+u=nu vii) ¢(du) = (cd)u
o iv) u+(—u)=—-u+u=0, (viii) la =u
. where —u denotes (—1)u
-V
u-v

FIGURE 7
Vector subtraction.

For simplicity of notation, a vector such as u + (—1)v is often written as u —v.
Figure 7 shows u — v as the sum of u and —v.
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FIGURE 9

Linear Combinations

Given vectors v, va, ..., vV, in R" and given scalars ¢y, ¢a, .. ., ¢, the vector y defined
by

Y=cavi+--+cpv,
is called a linear combination of vy, ..., v, withweightsc;, ..., c,. Property (ii) above
permits us to omit parentheses when forming such a linear combination. The weights in
a linear combination can be any real numbers, including zero. For example, some linear
combinations of vectors v; and v, are

\/§V1 =+ v,, %Vl (= %V] + OVz), and 0 (= Oovy + OVZ)

EXAMPLE 4 Figure 8 identifies selected linear combinations of v; = [_i :| and

2 N . .
L (Note that sets of parallel grid lines are drawn through integer multiples of
v; and v,.) Estimate the linear combinations of v, and v, that generate the vectors u and
w.

Vy) =

FIGURE 8 Linear combinations of v; and v,.

SOLUTION The parallelogram rule shows that u is the sum of 3v; and —2v;; that is,
u=3v; —2v,

This expression for u can be interpreted as instructions for traveling from the origin to u
along two straight paths. First, travel 3 units in the v; direction to 3v;, and then travel —2
units in the v, direction (parallel to the line through v, and 0). Next, although the vector
W is not on a grid line, w appears to be about halfway between two pairs of grid lines,
at the vertex of a parallelogram determined by (5/2)v; and (—1/2)v,. (See Figure 9.)
Thus a reasonable estimate for w is

5 1
W =35V —5V2 |

The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

1 2 7
EXAMPLE S5 leta,=| -2 |,a3=|5|,andb = 4 |. Determine whether
-5 6 -3

b can be generated (or written) as a linear combination of a; and a,. That is, determine
whether weights x; and x; exist such that

xja; +xa, =>b (1)

If vector equation (1) has a solution, find it.
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SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

1 2 7
Xi| =2 |+x| 5| = 4
-5 6 -3
t t t
a; a b
which is the same as
X1 2X2 7
=2x1 |4+ | 5% | = 4
—le 6X2 -3
and
X1+ 2xo 7
—2x, +5x, | = 4 (2)
—5x1 + 6x2 -3

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x; and x, make the vector equation (1) true if and only
if x| and x; satisfy the system
X1+ 2x, = 7
—2x; +5x, = 4 3)
—le + 6X2 =-3

To solve this system, row reduce the augmented matrix of the system as follows:?

1 2 7 1 2 7 2 7 1 0 3
-2 5 4|~]1]0 9 18|~|0 I 2|~]0 1 2
-5 6 3 0 16 32 0 16 32 0 0 O

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,,
with weights x; = 3 and x, = 2. That is,

1 2 7
3| 2 (+2|5|= 4 |
-5 6 -3

Observe in Example 5 that the original vectors a;, a,, and b are the columns of the
augmented matrix that we row reduced:

1 2 7
2 5 4
-5 6 3

bttt
a a b

For brevity, write this matrix in a way that identifies its columns—namely,
[ai ay b] )

It is clear how to write this augmented matrix immediately from vector equation (1),

without going through the intermediate steps of Example 5. Take the vectors in the

order in which they appear in (1) and put them into the columns of a matrix as in (4).
The discussion above is easily modified to establish the following fundamental fact.

3 The symbol ~ between matrices denotes row equivalence (Section 1.2).
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A vector equation
xja; +xa, +---+x,a,=>b

has the same solution set as the linear system whose augmented matrix is
[ay, a - a, b] 4)

In particular, b can be generated by a linear combination of ay, . . ., a, if and only
if there exists a solution to the linear system corresponding to the matrix (5).

One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {vi,...,v,} of vectors.

If vi,...,v, are in R", then the set of all linear combinations of vy,...,v,
is denoted by Span{vi,...,v,} and is called the subset of R" spanned (or
generated) by v,,...,v,.Thatis,Span{vy,...,v,} is the collection of all vectors
that can be written in the form

C1V1 + oV + -+ CpVp

with ¢y, ..., ¢, scalars.

Asking whether a vector b is in Span{v,...,v,} amounts to asking whether the
vector equation

X1VL + XoVo + oo+ XpV) =b

has a solution, or, equivalently, asking whether the linear system with augmented matrix

[vi --- v, b]hasasolution.

Note that Span{vi,...,v,} contains every scalar multiple of v; (for exam-
ple), since ¢vy = ¢v; + 0vy + ---+ 0v,. In particular, the zero vector must be in
Span{vy,...,v,}.

A Geometric Description of Span{v} and Span{u, v}

Let v be a nonzero vector in R*. Then Span {v} is the set of all scalar multiples of v,
which is the set of points on the line in R? through v and 0. See Figure 10.

If u and v are nonzero vectors in R>, with v not a multiple of w, then Span {u, v} is
the plane in R3 that contains u, v, and 0. In particular, Span {u, v} contains the line in
R3 through u and 0 and the line through v and 0. See Figure 11.

X3
X3 Span{u, v}
Span{v}
v
%2
X
FIGURE 10 Span{v}asa FIGURE 11 Span{u,v}asa

line through the origin. plane through the origin.
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1 5 -3
EXAMPLEG6 let a=| 2|, aa=|—-13|, and b= 8 |. Then
3 -3 1

Span{a;,a,} is a plane through the origin in R*. Is b in that plane?

SOLUTION Does the equation x;a; + x,a, = b have a solution? To answer this, row
reduce the augmented matrix [a; a, b]:

1 5 -3 1 5 =3 1 5 =3

-2 —-13 8|~]|0 =3 2|1 ~10 =3 2

3 -3 1 0 —18 10 0o 0 -2
The third equation is 0 = —2, which shows that the system has no solution. The vector
equation xja; 4+ xpa; = b has no solution, and so b is not in Span{a;, a,}. [ |

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per

unit is known:
number cost | _ | total
of units perunit{ | cost

EXAMPLE 7 A company manufactures two products. For $1.00 worth of product
B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For $1.00
worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on
overhead. Let

.45 .40
b= .25 and ¢=| .30
15 .15

Then b and ¢ represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x; dollars worth of product B and
X, dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

SOLUTION
a. Compute
.45 45
100b = 100| .25 | = | 25
15 15

The vector 100b lists the various costs for producing $100 worth of product B—
namely, $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x; dollars worth of B are given by the vector x;b, and
the costs of manufacturing x, dollars worth of C are given by x;c. Hence the total
costs for both products are given by the vector x;b + x,c. [ |
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PRACTICE PROBLEMS

1. Prove thatu + v = v + u forany u and v in R”.
2. For what value(s) of & will y be in Span{vy, v,, v3} if

1 5 -3 —4
vi=| —-11, v, =| —4 |, V3 = 1|, and y= 3
-2 -7 0 h

3. Letwy, wy, w3, u,and v be vectors in R”. Suppose the vectors u and v are in Span
{w1,wy, ws}. Show that u + v is also in Span {w, w,, w3}. [Hint: The solution to
Practice Problem 3 requires the use of the definition of the span of a set of vectors.
It is useful to review this definition on Page 30 before starting this exercise.|

1.3 EXERCISES

In Exercises 1 and 2, compute u + v and u — 2v. In Exercises 9 and 10, write a vector equation that is equivalent to
_1 3 the given system of equations.
Lou= [ ],v - [ ]
2 -1 9. X, + 5x3 =0 10. 4x, + xo+3x3= 9
3 2 4x1+6x2—x3=0 x1—7x2—2x3= 2
2. u= > V=1 2
—X; + 3)C2 — 8X3 =0 8)C1 + 6)C2 — 5)C3 =15

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, —v, —2v,u +v,u—v,and u — 2v. Notice ~ In Exercises 11 and 12, determine if b is a linear combination of

that u — v is the vertex of a parallelogram whose other verticesare 1. @2,and as.

u,0,and—v. B 1_ _O_ B 5 2
3. uand v asin Exercise 1 4. uand v as in Exercise 2 1. a = _g =1 a= _g b= _é
In Exercises 5 and 6, write a system of equations that is equivalent - o -
to the given vector equation. o1 m0 Mo _5
6 _3 1 12. aj=| 2 |,aa=|5],a3=|0]|,b=] 11
5.0 -1 |+x| 4|=|-7 L 2] L5 L8 =7
5 0 -5
In Exercises 13 and 14, determine if b is a linear combination of
6 -2 8 11 10 the vectors formed from the columns of the matrix A4.
o[BS ee[] =[] :
1 -4 2 3
Use the accompanying figure to write each vector listed in Exer- 13. A= 0 3 5|.b=|-7
cises 7 and 8 as a linear combination of u and v. Is every vector | -2 8 —4 -3
in R? a linear combination of u and v?
1 —2 -6 11
4. A=(0 3 7 |,b=|-5
1 -2 5 9

In Exercises 15 and 16, list five vectors in Span {v;, v,}. For each
vector, show the weights on v; and v, used to generate the vector
and list the three entries of the vector. Do not make a sketch.

7 -5

15. vV, = 1 ,Vp = 3

| —6 0
7. Vectorsa,b,¢,and d 3 -2
16. vV, = 0 , Vo = 0
8. Vectors w,Xx,y,and z 2 3



17.

18.

19.

20.

21.

22.

1 -2 4
Let a; = ,a=| -3 |,andb=| 1 |. For what
| —2 ] 7 h
value(s) of / is b in the plane spanned by a; and a,?
1] -3 h
Letv, = 01|,v, = 1 |[,andy = | —5 |.For what
| —2 | 8 -3

value(s) of % isy in the plane generated by v; and v,?

Give a geometric description of Span {v;, v,} for the vectors

8 12
V| = 2 | andv, = 3
-6 -9

Give a geometric description of Span {v;, v,} for the vectors
in Exercise 16.

Let u:[_%] and v:[%]. Show that I:Z] is in

Span {u, v} forall & and k.

Constructa 3 x 3 matrix A, with nonzero entries,and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

24.

25.

a. Another notation for the vector |: _g] is[—4 3].

b. The points in the plane corresponding to |:_§i| and

[ _2 ] lie on a line through the origin.

c. An example of a linear combination of vectors v; and v,
is the vector 1v;.

d. The solution set of the linear system whose augmented
matrix is [a; a, a; b] is the same as the solution
set of the equation x;a; 4+ x,a, + x3a3 = b.

e. The set Span{u,v} is always visualized as a plane
through the origin.

Any list of five real numbers is a vector in R>.

®

b. The vector u results when a vector u — v is added to the
vector v.

c. The weights ¢;,...,c, in a linear combination
c1vy + -+ + ¢,v, cannot all be zero.

d. When u and v are nonzero vectors, Span {u, v} contains
the line through u and the origin.

e. Asking whether the linear system corresponding to
an augmented matrix [a; a, a; b] has a solution
amounts to asking whether b is in Span {a;, a,, a;}.

1 0 —4 4
Let A = 0 3 =2 | and b= 1 |. Denote the
-2 6 3 —4

columns of A by a;, a,,a3,and let W = Span {a,, a,, a;}.

26.

27.

28.

29.
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a. Isbin{a;,a,,a;}? How many vectors are in {a,, a,, a3 }?
b. Is b in W? How many vectors are in W?

c. Show that a; is in W. [Hint: Row operations are unnec-
essary.|

2 0 6 10
Let A= —1 8 5],letb= 3 |, and let W be
1 -2 1 3

the set of all linear combinations of the columns of A.

a. Isbin W?
b. Show that the third column of A isin W.

A mining company has two mines. One day’s operation at
mine #1 produces ore that contains 20 metric tons of cop-
per and 550 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 30 metric tons of

copper and 500 kilograms of silver. Let v; = |: 5§8i| and
30 « .
V2= 1500 | Then v, and v, represent the “output per day

of mine #1 and mine #2, respectively.

a. What physical interpretation can be given to the vector
5v 1 ?

b. Suppose the company operates mine #1 for x; days and
mine #2 for x, days. Write a vector equation whose solu-
tion gives the number of days each mine should operate in
order to produce 150 tons of copper and 2825 kilograms
of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For
each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x; tons of A and x, tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x; tons of A and x, tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

Let vi,...,V;y be points in R3 and suppose that for
j =1,..., k an object with mass m is located at point v;.
Physicists call such objects point masses. The total mass of
the system of point masses is

m=my + -+ my
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The center of gravity (or center of mass) of the system is

_ 1
V= —[mvy+ -+ mvg
m

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass
vi = (5,—4,3) 2g
v, = (4,3,-2) S5¢g
vy = (—4,-3,—-1) 2g
v, =(-9,8,6) lg
X3

V4

K Vl —
;v
X, 3 X,
\P)

30. Let v be the center of mass of a system of point
masses located at vy,...,v, as in Exercise 29. Is v in
Span {vy, ..., vx}? Explain.

31. A thin triangular plate of uniform density and thickness has
vertices at v = (0, 1),v, = (8,1),and v; = (2,4),as in the
figure below, and the mass of the plate is 3 g.

B2

V.

32.

33.

34.

a. Find the (x, y)-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with
the center of mass of a system consisting of three 1-gram
point masses located at the vertices of the plate.

b. Determine how to distribute an additional mass of 6 g
at the three vertices of the plate to move the balance
point of the plate to (2,2). [Hint: Let wy, w,, and ws
denote the masses added at the three vertices, so that
w; + wy + ws :6]

Consider the vectors Vi, V,, v3, and b in R?, shown in the
figure. Does the equation x;v; + x2v, + x3v3 = b have a
solution? Is the solution unique? Use the figure to explain
your answers.

A4
V3
ob

V.
Ja

0 °
Vi

Use the vectors u= (uy,...,u,), v= (v,...,v,), and

w = (wl, ..
ties of R”.

., w,) to verify the following algebraic proper-

a. (m+v)+w=u+(v+w

b. c(u+v) = cu+ cv for each scalar ¢

Use the vectoru = (uy, ...
braic properties of R”.

,u,) to verify the following alge-

a. u+(—u)=(—-u)+u=0
b. c¢(du) = (cd)ufor all scalars ¢ and d

SOLUTIONS TO PRACTICE PROBLEMS

1. Take arbitrary vectors u = (uq, ..

u+v=(u +vy,..
= (v; +uy,..
=v+u

S uy)and v = (vy,...,v,) in R”,and compute

Definition of vector addition

-sun+vn)
-svn—‘f_un)

Commutativity of addition in R

Definition of vector addition

2. The vector y belongs to Span {v;, v,, v3} if and only if there exist scalars x, x5, x3

Span (v, vy, V) such that
1 1 5 -3 —4
x| =1L | +x2| =4 |+ x3 1| = 3
—4 -2 -7 0 h
The points 3 | lie on a line that
h This vector equation is equivalent to a system of three linear equations in three

intersects the plane when i = 5.

unknowns. If you row reduce the augmented matrix for this system, you find that
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1 5 -3 -4 1 5 =3 —4 I 5 =3 —4
-1 -4 1 3|~]10 1 =2 —1 ~10 1 =2 —1
-2 =7 0 h 0 3 -6 h-8 0 0 0 h-5

The system is consistent if and only if there is no pivot in the fourth column. That
is,h — 5 must be 0. Soy is in Span{vy, vy, v3}if and only if & = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

3. Since the vectors u and v are in Span {w, W, W3}, there exist scalars ¢y, ¢,, c3 and
dy, d>, ds such that

U=c W +c;Wy+c3wz and v =d|w|+ drw, + ds ws.
Notice
u+v = W] + oW + c3W3 + d\W1 + dawy + dzws
= (a+d)wi+ (2 +dr)wy+ (c3+d3)ws

Since ¢ + di, ¢z + da, and ¢3 + d3 are also scalars, the vector u + v is in Span
{Wi, Wy, w3}

1.4 | THE MATRIX EQUATION Ax=b

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.

If A is an m X n matrix, with columns a;,...,a,, and if x is in R”, then the
product of A and x, denoted by Ax, is the linear combination of the columns
of A using the corresponding entries in x as weights; that is,

X1
Ax=[a; a - a,]| : | =xia +x0a+ -+ x,8,

Xn

Note that Ax is defined only if the number of columns of A equals the number of entries
inx.

EXAMPLE 1

oo 2R =]

2 -3 4 2 -3 8 —21 —13
b &8 0 |:7i| =4 8|+7| O0|= 32 | + 0] = 32 |
-5 2 -5 2 -20 14 —6

EXAMPLE 2 Forvy, vy, vsin R™, write the linear combination 3v; — 5v, + 7v3 as
a matrix times a vector.
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THEOREM 3

SOLUTION Place vy, v5, v3 into the columns of a matrix A and place the weights 3, —5,
and 7 into a vector X. That is,

3
3V1 — 5V2 + 7V3 = [V1 V2 V3] ) = AXx |
7

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

X1 4+2x — x3=4
—5x7 +3x3 =1

IR

As in Example 2, the linear combination on the left side is a matrix times a vector, so

that (2) becomes
X1
1 2 -1 4
X3

Equation (3) has the form Ax = b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax = b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.

ey

is equivalent to

If A is an m x n matrix, with columns a, ..., a,, and if b is in R” the matrix
equation
Ax=Db (€]

has the same solution set as the vector equation
xia; + x4, + .-+ x,a, = b 5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is
[ai a, - a, b] (6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different
but equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way — by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.
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Span{al, a,, a3}

The columns of

A= [al
through 0.

a

a3 | span a plane

THEOREM 4

1.4 The Matrix Equation Ax =b 37

Existence of Solutions

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

Section 1.3 considered the existence question, “Is b in Span{a,, ..., a,}?” Equiva-
lently, “Is Ax = b consistent?” A harder existence problem is to determine whether the
equation Ax = b is consistent for all possible b.

1 3 4 b
EXAMPLE 3 LetA=| -4 2 —6 |andb= | b, |.Isthe equation Ax = b
-3 -2 -7 bs

consistent for all possible by, by, b3?

SOLUTION Row reduce the augmented matrix for Ax = b:

1 3 4 b 1 3 4 by
—4 2 =6 by |~|0 14 10 by+4b
-3 =2 -7 Iy 0 7 5 by +3b
1 3 4 by
~ 10 14 10 by + 4b,

0 0 0 b3+3b—1(by+4by)

The third entry in column 4 equals by — %bz + b3.The equation Ax = b is not consistent
for every b because some choices of b can make b; — %bz + b3 nonzero. [ |

The reduced matrix in Example 3 provides a description of all b for which the
equation Ax = b is consistent: The entries in b must satisfy

bi— by +b;=0

This is the equation of a plane through the origin in R*. The plane is the set of all linear
combinations of the three columns of 4. See Figure 1.

The equation Ax = b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have a row suchas [0 0 0 1].

In the next theorem, the sentence “The columns of A span R”” means thateverybin

R™ is a linear combination of the columns of A.In general, a set of vectors {vy,...,V,}
in R™ spans (or generates) R™ if every vector in R™ is a linear combination of
Vi,...,Vp—thatis,if Span{vy,...,v,} = R".

Let A be an m x n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.
For each b in R™, the equation Ax = b has a solution.

Each b in R” is a linear combination of the columns of A.

The columns of A span R™.

SICEN

A has a pivot position in every row.
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Theorem 4 is one of the most useful theorems in this chapter. Statements (a), (b),and
(c) are equivalent because of the definition of Ax and what it means for a set of vectors
to span R”. The discussion after Example 3 suggests why (a) and (d) are equivalent;
a proof is given at the end of the section. The exercises will provide examples of how
Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [ A b has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Computation of Ax

The calculations in Example 1 were based on the definition of the product of a matrix A
and a vector X. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

2 3 4 X1
EXAMPLE 4 Compute Ax,where A=| —1 5 =3 |[andx=| x,
6 —2 8 X3
SOLUTION From the definition,
2 3 4 X1 2 3 4
—1 5 =3 X2 = X1 —1 + X7 5 + X3 -3
6 —2 8 X3 6 -2 8
2X1 3X2 ] 4X3
=| —x; | + 5x0 | + | —3x3 @)
6x —2x; | 8x3

[ 2x; +3xy + 4x3 |
= | —x1 4+ 5x, —3x3
L 6x1 —2x7 + SX3_

The first entry in the product AX is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,

2 3 4 X1 2x1 + 3x; + 4x3
X2 =
X3
This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at

once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:

X1
-1 5 =3 X2 = —X1 + 5X2 — 3X3
X3
Likewise, the third entry in Ax can be calculated from the third row of 4 and the entries
in x. |

Row-Vector Rule for Computing Ax

If the product Ax is defined, then the i th entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.
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EXAMPLE 5
L2 -l ‘3‘ (144234 (-1)-7]_[3
[0 =5 3]|5 1044+ (=5)-34+3-7| |6
2 -3 4 2-44(=3)-7 —137]
b. 8 0 [J: 8-440-7 =] 32
| -5 2 (=5)-44+2-7 -6
1 0 r 1. r+0-5s4+0-¢ M r
C. 0 1 =|0-r4+1-5s4+0-t [ =|s [ |
_0 0 1 t O-r+0-s+1-¢ | ¢

By definition, the matrix in Example 5(c) with 1°s on the diagonal and 0’s elsewhere
is called an identity matrix and is denoted by 7. The calculation in part (c) shows that
Ix = xforevery xin R®. There is an analogous n x n identity matrix, sometimes written
as I,. As in part (c), I,x = x for every x in R".

Properties of the Matrix—Vector Product Ax

The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of R”.

If A isan m x n matrix, u and v are vectors in R”, and c is a scalar, then:

a. A(u+v) = Au + Av,
b. A(cu) = c(Au).

PROOF For simplicity, taken =3, A =[a; a, az],andu,vin R3. (The proof of
the general case is similar.) For i = 1,2, 3, let u; and v; be the ith entries in w and v,
respectively. To prove statement (a), compute A(u + v) as a linear combination of the
columns of A using the entries in u 4 v as weights.

up + v
Uy + v
Uz + v3

A(m+v) =[a; ay a3]

) Entries inua + v
= (u1 +vpay + (u2 + v2)ay + (u3 + v3)as

1 1 1
= (u1a; + ura; + uzaz) + (via; + v2a + v3az)
= Au + Av

Columns of A

To prove statement (b), compute A(cu) as a linear combination of the columns of A
using the entries in cu as weights.

(6751
CUy
CUs

A(cu) =[a; a, a;z] = (cupa; + (cuz)ay + (cuz)a;
= c(u1a;) + c(u2a) + c(uza3)
= c(u1a; + uza; + uzasz)

= c(Au) [ |
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1.4 EXERCISES

— NUMERICAL NOTE

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax as
a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b),and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given b in R, we can row reduce the augmented
matrix [ A b] to an augmented matrix [ U d] for some d in R":

[4 b]~-~[U 4]

If statement (d) is true, then each row of U contains a pivot position and there can be no
pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true. If (d)
is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry. Then
[U d]represents an inconsistent system. Since row operations are reversible, [U  d ]
can be transformed into the form [ A b ]. The new system Ax = b is also inconsistent,
and (a) is false. [ |

PRACTICE PROBLEMS
3

1 5 -2 0 5 -7
1. LetA=| -3 I 9 =5 |,p= ,andb = 9 |.Itcan be shown that
0
4 -8 —-1 7 4 0

p is a solution of Ax = b. Use this fact to exhibit b as a specific linear combination
of the columns of A.

2 5
3 1

by computing A(u + v) and Au + Av.

2. Let A = ] u= [_411 ] sand v = [_2 ] Verify Theorem 5(a) in this case

3. Construct a 3 x 3 matrix A and vectors b and ¢ in R? so that Ax = b has a solution,

but Ax = ¢ does not.

Compute the products in Exercises 1—4 using (a) the definition, as In Exercises 5-8, use the definition of AX to write the matrix
in Example 1, and (b) the row—vector rule for computing Ax.If a  equation as a vector equation, or vice versa.

product is undefined, explain why.

5
2 5 1 -8 4] -1 -8
6j|[ 5] Sl -7 3 —5] 3 _[16}
-1 L
__1 -
7 -3 1

—4 27T 3
1. 1 6| =2 2.
o 1] 7
T 6 57f
3. | -4 =3 _g] 4
7 6]t

- 1 2 1 [—2] -9
8 3 —4 6. =
s 1 2]{1] 9 —6 | -5 12

-3 2 —4



) 7 6

-1 3 -8 —8

7. x + X2 _5 + X3 0ol = 0
—4 1 2 -7

o[ ool LS [

In Exercises 9 and 10, write the system first as a vector equation
and then as a matrix equation.

9. 3X1+)C2—5X3:9 10. 8X1—X2=4

X2+4X3:O 5X1+4X2:1
X1 — 3X2 =2
Given 4 and b in Exercises 11 and 12, write the augmented matrix

for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.

1 2 4 -2
11. A= 0 1 5(,b= 2
| —2 —4 -3 | L 9]
12 17 0]
12. A=| -3 -1 2|,b=
. 0 5 3] | —1 ]
0 3 -5
13. letu=| 4 [and A= | =2 6 |.Is uin the plane R?
4 1 1
spanned by the columns of A? (See the figure.) Why or why
not?
Su?
Plane spanned by
/";/o u? the columns of A
Where is u?
2 5 8 7
14. Letu=| -3 [andA=| 0 1 —1 |.Isuinthesubset
| 2 1 3 0
of R? spanned by the columns of A? Why or why not?
[ 2 -1 b .
15. LetA = 6 3 andb = b | Show that the equation
L — 2

Ax = b does not have a solution for all possible b, and
describe the set of all b for which Ax = b does have a

solution.
1 -3 —4 by
16. Repeat Exercise 15:A=| -3 2 6 |,b=| b,
5 -1 -8 by

Exercises 17-20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

1.4 The Matrix Equation Ax =b 41

3 0 3 1 3 -2 2

-1 -1 -1 1 0 1 1 =5

A= 0 -4 2 -8 B = 1 2 -3 7
2 0 3 -1 -2 -8 2 -1

17. How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R*?

18. Do the columns of B span R*? Does the equation Bx =y
have a solution for each y in R*?

19. Can each vector in R* be written as a linear combination of
the columns of the matrix A above? Do the columns of A
span R*?

20. Can every vector in R* be written as a linear combination of
the columns of the matrix B above? Do the columns of B

span R3?

1] 0] M 17

0 —1 0

21. Letv, = 1= oV = 0
| 0| L 1] =

Does {v}, v, v3} span R*? Why or why not?
0] 07 47

22, Letv, = 0, vo=1| -3 |,vs=1] —1

-2 8 -5

Does {Vv}, v, v3} span R*? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. The equation Ax = b is referred to as a vector equation.

b. A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax = b has at least
one solution.

c. The equation Ax = b is consistent if the augmented ma-
trix [ A b ] has a pivot position in every row.

d. The first entry in the product AX is a sum of products.

e. If the columns of an m x n matrix A span R™, then the
equation AX = b is consistent for each b in R”.

f. If A is an m x n matrix and if the equation Ax = b is
inconsistent for some b in R™, then A cannot have a pivot
position in every row.

24. a. Every matrix equation AX = b corresponds to a vector

equation with the same solution set.

b. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix 4 and vector x.

c. The solution set of a linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
SetOfAX:b,ifA:[al a 33].

d. If the equation AX = b is inconsistent, then b is not in the
set spanned by the columns of 4.

e. If the augmented matrix [ A b ] has a pivot position in
every row, then the equation AX = b is inconsistent.
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25.

26.

27.

28.

29.

30.

31.
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f. If A isan m x n matrix whose columns do not span R”,
then the equation AX = b is inconsistent for some b in
R™.

4 -3 1 -3 -7
Note that 5 =2 5 —1 [ =] —3 |. Use this fact
-6 2 =3 2 10
(and no row operations) to find scalars ¢y, ¢5, ¢3 such that
-7 4 -3 1
-3 =C] 5 + o -2 + 3 5
10 -6 2 -3
7 3 6
Letu=|2|,v=|1|,andw=] 1
5 3 0

It can be shown that 3u — 5v —w = 0. Use this fact (and
no row operations) to find x; and x, that satisfy the equation

7 3 N 6
2 1 [X‘] =1
5 3]t 0
Let q,, Q5. q5. and v represent vectors in R, and let x;, x,,

and x; denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

X1q; + X2q; + X33 =V

Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols vy, v,, ... for the
vectors and ¢y, ¢y, . .. for scalars. Define what each symbol
represents, using the data given in the matrix equation.

-3

-3 5 —4 9 7 i _ 8
5 8 1 -2 —4 1 |
2
Construct a 3 x 3 matrix, not in echelon form, whose

columns span R?. Show that the matrix you construct has the
desired property.

Construct a 3 x 3 matrix, not in echelon form, whose
columns do not span R*. Show that the matrix you construct
has the desired property.

Let A be a 3 x 2 matrix. Explain why the equation Ax = b
cannot be consistent for all b in R*. Generalize your

El Mastering Linear Algebra Concepts: Span 1-18

32.

33.

34.

35.

36.

argument to the case of an arbitrary A with more rows than
columns.

Could a set of three vectors in R* span all of R*? Explain.
What about n vectors in R” when n is less than m?

Suppose A is a 4 x 3 matrix and b is a vector in R* with the
property that AX = b has a unique solution. What can you say
about the reduced echelon form of A? Justify your answer.

Suppose A is a 3 x 3 matrix and b is a vector in R® with the
property that AX = b has a unique solution. Explain why the
columns of 4 must span R3.

Let A be a 3 x 4 matrix, let y; and y, be vectors in R3, and
letw =y, +¥,. Suppose y, = Ax; and y, = AxX, for some
vectors X; and X, in R*. What fact allows you to conclude that
the system AX = w is consistent? (Note: X; and X, denote
vectors, not scalar entries in vectors.)

Let A be a 5 x 3 matrix, let y be a vector in R?, and let z
be a vector in R’. Suppose Ay = z. What fact allows you to
conclude that the system Ax = 4z is consistent?

[M] In Exercises 37-40, determine if the columns of the matrix

span R*.
7 2 =5 8 5 =7 -4 9
-5 -3 4 -9 6 -8 -7 5
37. 6 10 -2 7 38. 4 -4 -9 -9
| —7 9 2 15 -9 11 16 7
12 -7 11 -9 5
-9 4 -8 7 =3
3. —6 1 -7 3 =9
| 4 -6 10 -5 12
8 11 -6 —7 13
-7 -8 5 6 -9
40. 11 7 -7 -9 -6
| -3 4 1 8 7
41. [M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R%.
42. [M] Find a column of the matrix in Exercise 40 that can be

deleted and yet have the remaining matrix columns still span
R*. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

-2 0 -7
1 9 -5 _(2) = 9
-8 -1 7 0
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is equivalent to the vector equation

1 5 -2 0 -7
3/ -3|—=2| 1|+0] 9|—-4-5|= 9
4 =8 —1 7 0

which expresses b as a linear combination of the columns of A.
[ 4 (-3 1
2. u—i—v-__l]—i-_ 5]—[4}
2 sq[t] _[2+420] [22
Aw+v) =13 1]_4}_[3+4}_[7]
2 5[ 4 L2 s[3

|3 ][ -1 3 1 5
[ 3 + 191 |22
L —4 || 7
Remark: There are, in fact, infinitely many correct solutions to Practice Problem 3.
When creating matrices to satisfy specified criteria, it is often useful to create

matrices that are straightforward, such as those already in reduced echelon form.
Here is one possible solution:

Au + Av

3. Let
1 0 1 3 3
A=10 1 1|,b=1|2|,andc= |2
0O 0 O 0 1

Notice the reduced echelon form of the augmented matrix corresponding to Ax = b
is

1 0 1 3
o 1 1 2},
0 0 0 O

which corresponds to a consistent system, and hence Ax = b has solutions. The
reduced echelon form of the augmented matrix corresponding to AX = ¢ is

1 0 1 3
o 1 1 2},
0 0 0 1

which corresponds to an inconsistent system, and hence Ax = ¢ does not have any
solutions.

1.5 | SOLUTION SETS OF LINEAR SYSTEMS

Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the form
Ax = 0, where A is an m x n matrix and 0 is the zero vector in R™. Such a system
Ax = 0 always has at least one solution, namely, x = 0 (the zero vector in R"). This
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FIGURE 1

zero solution is usually called the trivial solution. For a given equation Ax = 0, the
important question is whether there exists a nontrivial solution, that is, a nonzero
vector x that satisfies Ax = 0. The Existence and Uniqueness Theorem in Section 1.2
(Theorem 2) leads immediately to the following fact.

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.

3x1 + 5x, —4x3=0
—3x; —2x, +4x3 =0
6x1 + x2 —8x3=0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix [ A 0] to echelon form:

3 5 -4 0 3 5 -4 0 3 5 -4 0
-3 -2 4 O0|~]J0 3 0 O0O|~]0 3 0 O
6 1 -8 0 0 -9 0 0 0 0 0 O

Since x3 is a free variable, Ax = 0 has nontrivial solutions (one for each choice of x3).
To describe the solution set, continue the row reduction of [ A 0] to reduced echelon
form:

10 -4 0 X1 =30 =0
01 0 0 X2 =0
0 0 0 0 0 —o

Solve for the basic variables x; and x, and obtain x; = %X3, x, = 0, with x3 free. As a
vector, the general solution of Ax = 0 has the form

4 4 4
X1 3%3 3 3
X=|x |= 0 =x3| 0 | =x3v, wherev=] 0
X3 X3 1 1

Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax = 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 = 0. Geometrically, the solution set is a line through 0 in R3.
See Figure 1. [ |

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

1OX1 — 3X2 — 2X3 =0 (1)

SOLUTION There is no need for matrix notation. Solve for the basic variable x; in
terms of the free variables. The general solution is x; = .3x; + .2x3, with x; and x3
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free. As a vector, the general solution is

X1 3xo 4+ .2x3 [ 3x; 2X3
X=|x | = X2 = X | + 0
X3 X3 B 0 X3
3 27
=xo| 1 |+x3] 0 (with x,, x5 free) 2)
0 1]
t t
u V

This calculation shows that every solution of (1) is a linear combination of the vectors
u and v, shown in (2). That is, the solution set is Span {u, v}. Since neither w nor v is a
scalar multiple of the other, the solution set is a plane through the origin. See Figure 2.

|

Examples 1 and 2, along with the exercises, illustrate the fact that the solution
set of a homogeneous equation Ax = 0 can always be expressed explicitly as
Span{vy,...,v,} for suitable vectors vi, ..., v,. If the only solution is the zero vector,
then the solution set is Span {0}. If the equation Ax = 0 has only one free variable, the
solution set is a line through the origin, as in Figure 1. A plane through the origin, as in
Figure 2, provides a good mental image for the solution set of Ax = 0 when there are
two or more free variables. Note, however, that a similar figure can be used to visualize
Span {u, v} even when u and v do not arise as solutions of Ax = 0. See Figure 11 in
Section 1.3.

Parametric Vector Form

The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

X =su+1tv (s,¢tinR)

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
X = x3V (with x3 free), or x = tv (with ¢ in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax = b, where

3 5 —4 7
A=| -3 -2 4 and b=| —1
6 1 -8 —4
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I
FIGURE 3

Adding p to v translates v to v + p.

FIGURE 4

Translated line.

L+p

SOLUTION Here A is the matrix of coefficients from Example 1. Row operations on
[A b] produce

3 5 —4 17 1 0 -3 -1 X1 —3x3=-—1
-3 2 4 —-1|~]10 1 0 2/, X =
6 1 —8 —4 0O 0 0 0 0 =0
Thusx; = —1 + %)C3,XQ = 2,and xj is free. As a vector, the general solution of AX = b
has the form
X —14 3x3 —1 2x3 —1 2
X=|x | = 2 = 214+1 0 = 2 +x310
X3 X3 0 X3 0 1
t t
P v
The equation X = p + x3v, or, writing ¢ as a general parameter,
Xx=p+tv (inR) 3)

describes the solution set of Ax = b in parametric vector form. Recall from Example 1
that the solution set of Ax = 0 has the parametric vector equation

x=1tv (tinR) 4

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by
adding the vector p to the solutions of Ax = 0. The vector p itself is just one particular
solution of Ax = b [corresponding to ¢ = 0 in (3)]. [ |

To describe the solution set of Ax = b geometrically, we can think of vector
addition as a translation. Given v and p in R? or R3, the effect of adding p to v is
to move v in a direction parallel to the line through p and 0. We say that v is translated
by p to v + p. See Figure 3. If each point on a line L in R? or R? is translated by a
vector p, the result is a line parallel to L. See Figure 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of AX = b is a line through p parallel to the solution set of Ax = 0.
Figure 5 illustrates this case.

Ax=b

A PHIV
/

Ax=0
P /

tv

FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

The relation between the solution sets of Ax = b and Ax = 0 shown in Figure 5
generalizes to any consistent equation Ax = b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 25 for a proof.
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THEOREM 6 Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form
W = p + Vi, where vj, is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for
the translation. Figure 6 illustrates the case in which there are two free variables. Even
when n > 3, our mental image of the solution set of a consistent system Ax = b (with
b # 0) is either a single nonzero point or a line or plane not passing through the origin.

X3
Ax=Db
Ax =0
P
7 X,

X1

FIGURE 6 Parallel solution sets of
Ax = band Ax = 0.

Warning: Theorem 6 and Figure 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC
VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any [ree variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose X into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

PRACTICE PROBLEMS

1. Each of the following equations determines a plane in R*. Do the two planes
intersect? If so, describe their intersection.
X1 +4x, —5x3=0
2x1 — Xo +8x3=9
2. Write the general solution of 10x; — 3x; — 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.

3. Prove the first part of Theorem 6: Suppose that p is a solution of Ax = b, so that
Ap = b. Let v, be any solution to the homogeneous equation Ax = 0, and let
W = p + v;,. Show that w is a solution to AX = b.
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1.5 EXERCISES

In Exercises 14, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.

1. 2X1 - 5X2 + 8X3 =0 2.
—2)61 —7X2 + X3 =0

X1 —3X2+7X3:0
—2)61 + X2 —4X3:0

4x1+2x2+7x3=0 X1+2X2+9X3:0

3. —3X1 + 5X2 - 7X3 =0 4.
—6X1 +7X2 + X3 =0

—5X1 + 7X2 + 9X3 =0
X1 —2X2+6X3 =0

In Exercises 5 and 6, follow the method of Examples 1 and 2
to write the solution set of the given homogeneous system in
parametric vector form.

s. X1+3X2+ )C3:0 6.
—4X1 — 9X2 + 2X3 =0
—3X2 —6X3 =0

X1+3X2—5X3:0
X1+4X2—8X3:0
—3X1 —7X2+9X3=0

In Exercises 7-12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

13 -3 7 1 -2 -9 5
T lo 1 -4 5] 8. [o 12 —6}
0
0

[ 3 -9 6 13 —4
o -1 3 —2] 10. [2 6 —8]
(1 —4 =2 0 3 =57
0 0 1 0 0 —1
Wtg 0 0 0 1 —4
L0 0 0 0 0 0]
15 2 =6 9 0]
0 0 1 -7 4 -8
29 0 0 0 o 1
L0 0 0 0 0 0]

13. Suppose the solution set of a certain system of linear equa-
tions can be described as x| = 5 4 4x3,x, = —2 — 7x3,with
x3 free. Use vectors to describe this set as a line in R3.

14. Suppose the solution set of a certain system of linear
equations can be described as x; = 3x4, X = 8 + x4,
x3 = 2 — 5x4, with x4 free. Use vectors to describe this set
as a “line” in R*.

15. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

x| + 3X2 + Xx3= 1
—4X1 — 9X2 + 2X3 =—1
— 3X2 — 6X3 =-3

16. As in Exercise 15, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

x| + 3X2 — 5X3 = 4
X1 +4X2—8)C3: 7
—3X1 — 7X2 + 9X3 =-6
17. Describe and compare the solution sets of x; + 9x, —4x3 = 0
and x| + 9x, — 4x;3 = 2.
18. Describe and compare the solution sets of x; — 3x; + 5x3 =0
and x| — 3x, + 5x3 = 4.

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

e [$]ee[5] e o[ ]

In Exercises 21 and 22, find a parametric equation of the line M
through p and q. [Hint: M is parallel to the vector q — p. See the
figure below.]

nv=[Jo[2] mo=[4a-[ ]

X
\p\ X
. 1
}\ . -p
q-p

M

The line through p and q.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A homogeneous equation is always consistent.

b. The equation AX = 0 gives an explicit description of its
solution set.

c. The homogeneous equation Ax = 0 has the trivial so-
lution if and only if the equation has at least one free
variable.

d. The equation X = p + tv describes a line through v par-
allel to p.

e. The solution set of Ax = b is the set of all vectors of
the form w = p + v;,, where v, is any solution of the
equation Ax = 0.

24. a. Ifxisanontrivial solution of Ax = 0, then every entry in

X is nonzero.

b. The equation X = x,u + x;3v, with x; and x; free (and
neither u nor v a multiple of the other), describes a plane
through the origin.

c. The equation Ax = b is homogeneous if the zero vector
is a solution.

d. The effect of adding p to a vector is to move the vector in
a direction parallel to p.



25.

26.

27.

28.

e. The solution set of Ax = b is obtained by translating the
solution set of Ax = 0.

Prove the second part of Theorem 6: Let w be any solution of
Ax = b, and define v, = w — p. Show that v, is a solution
of Ax = 0. This shows that every solution of Ax = b has the
form w = p + v;,, with p a particular solution of AXx = b and
vy, a solution of Ax = 0.

Suppose AX = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

Suppose A is the 3 x 3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax = 0.

If b # 0, can the solution set of Ax = b be a plane through
the origin? Explain.

In Exercises 29-32, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

29.
30.
31.
32.

33.

A is a3 x 3 matrix with three pivot positions.
A is a 3 x 3 matrix with two pivot positions.
A is a3 x 2 matrix with two pivot positions.

A is a2 x 4 matrix with two pivot positions.

-2 -6
Given A = 7 21 |, find one nontrivial solution of
-3 -9

Ax = 0 by inspection. [Hint: Think of the equation Ax = 0
written as a vector equation. |

34.

35.

36.

37.

38.

39.

40.
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4 -6
Given A = | =8 12 |, find one nontrivial solution of
6 -9

Ax = 0 by inspection.

Construct a 3 x 3 nonzero matrix A such that the vector
1
1 | is a solution of Ax = 0.

1

Construct a 3 x 3 nonzero matrix A such that the vector
1
-2
1

is a solution of Ax = 0.

Construct a 2 x 2 matrix A such that the solution set of the
equation Ax = 0 is the line in R? through (4,1) and the
origin. Then, find a vector b in R? such that the solution set
of Ax = b is not a line in R? parallel to the solution set of
Ax = 0. Why does this not contradict Theorem 6?

Suppose A is a 3 x 3 matrix and y is a vector in R? such that
the equation AX =y does not have a solution. Does there
exist a vector z in R3 such that the equation Ax = z has a
unique solution? Discuss.

Let A beanm x n matrix and letu be a vector in R” that satis-
fies the equation Ax = 0. Show that for any scalar ¢, the vec-
tor cu also satisfies Ax = 0. [That is, show that A(cu) = 0.]

Let A be an m x n matrix, and let u and v be vectors in R”
with the property that Au = 0 and Av = 0. Explain why
A(u+v) must be the zero vector. Then explain why
A(cu + dv) = 0 for each pair of scalars ¢ and d .

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

1 4 -5 0 1 4 -5 0 1 0 3 4
2 -1 8 9 0 -9 18 9 0o 1 -2 -1
X1 =+ 3X3 = 4
Xy — ZX3 =—1
Thus x; = 4 — 3x3, x; = —1 4 2x3, with x; free. The general solution in parametric
vector form is
X1 4 — 3X3 4 -3
X | = =14+2x3 | =| =1 | +x3 2
X3 X3 0 1
t t
P V

The intersection of the two planes is the line through p in the direction of v.



